Theory of the Random Field Ising Model
نویسنده
چکیده
A review is given on some recent developments in the theory of the Ising model in a random field. This model is a good representation of a large number of impure materials. After a short repetition of earlier arguments, which prove the absence of ferromagnetic order in d ≤ 2 space dimensions for uncorrelated random fields, we consider different random field correlations and in particular the generation of uncorrelated from anti-correlated random fields by thermal fluctuations. In discussing the phase transition, we consider the transition to be characterized by a divergent correlation length and compare the critical exponents obtained from various methods (real space RNG, Monte Carlo calculations, weighted mean field theory etc.). The ferromagnetic transition is believed to be preceded by a spin glass transition which manifests itself by replica symmetry breaking. In the discussion of dynamical properties, we concentrate mainly on the zero temperature depinning transition of a domain wall, which represents a critical point far from equilibrium with new scaling relations and critical exponents.
منابع مشابه
Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.
متن کاملMagnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice
In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4), ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...
متن کاملWeighted Mean Field Theory for the Random Field Ising Model
We consider the mean field theory of the Random Field Ising Model obtained by weighing the many solutions of the mean field equations with Boltzmann-like factors. These solutions are found numerically in three dimensions and we observe critical behavior arising from the weighted sum. The resulting exponents are calculated.
متن کاملDisordered Systems and Logarithmic Conformal Field Theory
We review a recent development in theoretical understanding of the quenched averaged correlation functions of disordered systems and the logarithmic conformal field theory (LCFT) in d-dimensions. The logarithmic conformal field theory is the generalization of the conformal field theory when the dilatation operator is not diagonal and has the Jordan form. It is discussed that at the random fixed...
متن کاملThe Ising Model on 3D Random Lattices: A Monte Carlo Study
We report single-cluster Monte Carlo simulations of the Ising model on three-dimensional Poissonian random lattices with up to 128 000 ≈ 503 sites which are linked together according to the Voronoi/Delaunay prescription. For each lattice size quenched averages are performed over 96 realizations. By using reweighting techniques and finite-size scaling analyses we investigate the critical propert...
متن کاملIsing model on three-dimensional random lattices: A Monte Carlo study
We report single-cluster Monte Carlo simulations of the Ising model on three-dimensional Poissonian random lattices with up to 128 000'50 sites which are linked together according to the Voronoi-Delaunay prescription. For each lattice size quenched averages are performed over 96 realizations. By using reweighting techniques and finite-size scaling analyses we investigate the critical properties...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997